
Logical Decoding
and Auditing

Gianni Ciolli

FOSS4G North America 2015
PostgreSQL Theme Day

Burlingame, 10 March 2015

Feature History

• 7.0 and older
– Changes written to 1+ files on commit
– Random writes
– Changes are not collected anywhere

• 7.1 (2001): Write Ahead Log
– All changes “serialized” into one sequence
– Sequential writes to WAL files
– Changes are collected in binary format

Feature History #2

• 8.0 (2005): Point In Time Recovery
– WAL files copied to the archive
– Replay changes on another database server
– The whole database server is cloned

• 8.2 (2006): Warm Standby
– While replaying changes, waits for next WAL file
– The clone is continuously updated. . .
– . . . a.k.a. Replication

Feature History #3

• 9.0 (2010): Hot Standby, Streaming Replication
– While replaying changes, read-only access
– Changes are streamed using a client connection

• 9.4 (2014): Logical Decoding
– Changes are streamed in logical format

Binary Changes: WAL

• Example:
«write 0010010010110100... into file A at offset B»

• Very fast
– Only which bytes have changed, and how
– No SQL, very little logical information

• Not flexible
– Each changes depends on the previous one
– Changes must be applied to become meaningful
– Changes cannot be modified safely
– Cannot merge changes from different systems

Logical Changes

• Example:
«Insert string ‘Hello’ into table T»

• Logical changes can now be understood

• Open up many possibilities:
– Changes can be analysed
– . . . can be modified
– . . . can be reordered (with reason!)
– . . . can be merged with other changes

How Logical Works

• Decoding
– WAL describes file changes
– WAL is decoded to table changes
– DML only: the rest is ignored!

• Tables↔ Files
– Mapping required for decoding
– Defined in the catalog

• Output
– Logical decoding transforms data
– Changes are streamed by walsender

Binary Changes

pg_xlog

Backend

App

WalSender WalReceiver

Logical Decoding

pg_xlog

Backend

App

WalSender

Catalog

Receiver
(any)

Output
Plugin

Use Case: Replication

• Selective
Filter by table and more

• Bi-Directional
Conflict resolution now possible
http://www.2ndQuadrant.com/BDR

• Uni-Directional
Why? Less restrictions than Binary
(Online upgrades, temp tables, . . .)

http://www.2ndQuadrant.com/BDR

Other Use Cases

• “Logical Archiving”

• Diagnostics

• Auditing
– Topic of the remaining slides!

Logical (v Binary)

Binary Logical
instance database
DML, DDL, . . . DML only
only NEW also OLD

• Uses the catalogue (hence database-wide)

• Capture (some) DDL with Event Triggers

• “Forwards” and “backwards”
– For UPDATE and DELETE
– ALTER TABLE ... REPLICA IDENTITY

controls amount of OLD

Time Travel ???

• Could implement “time travel”. . .

WARNING

• PostgreSQL had time travel!

• Removed 17 years ago
– Performance reasons
– There is even an extension. . .

• Before coding:
– Evaluate costs v benefits
– Check history. . .

REPLICA IDENTITY

ALTER TABLE myTable
REPLICA IDENTITY ...;

• Which “old” column values?
– NOTHING

— None
– FULL

— All
– USING INDEX myIndex

— Columns covered by this index
– DEFAULT

— Primary key columns (if any)

Minimal Example #1 (config)

ALTER SYSTEM
SET wal_level = logical;

ALTER SYSTEM
SET max_replication_slots = 10;

-- Then restart...

Minimal Example #2 (SQL)

• Step 1: create a logical replication slot

SELECT * FROM
pg_create_logical_replication_slot
(’slot1’,’test_decoding’);

slot_name | xlog_position
-----------+---------------
slot1 | 0/1AE67D4
(1 row)

Minimal Example #2 (SQL)
• Step 2: peek changes (same db)

SELECT * FROM
pg_logical_slot_peek_changes
(’slot1’, NULL, NULL);

location | xid | data
-----------+------+-------------------------
0/1B137EC | 9980 | BEGIN 9980
0/1B18FCC | 9980 | COMMIT 9980
0/1B18FCC | 9981 | BEGIN 9981
0/1B18FCC | 9981 | table public.don_juan:

| | INSERT:
| | country[text]:’Spain’
| | count[integer]:1003

0/1B1904C | 9981 | COMMIT 9981
(5 rows)

Minimal Example #2 (SQL)

• What was the SQL?

CREATE TABLE don_juan (
country text NOT NULL,
count int NOT NULL);

INSERT INTO don_juan
VALUES (’Spain’, 1003);

Minimal Example #2 (SQL)

• Step 3: when finished, drop the slot

SELECT pg_drop_replication_slot(’slot1’);

Auditing with Logical Decoding

• Single-database audit
– Not a limitation actually!

• Performance
– Very efficient
– Generic benchmarks (A. Freund, P. Jelinek)

Auditing w. Logical Decoding #2

• What is logged?
– No DSL

— Difficult to audit anyway. . .
– No DDL

— Use Event Triggers for DDL
— This is what BDR does

– No DCL
— Use Event Triggers for (some) DCL

Auditing w. Logical Decoding #3

• What is logged?
– Not even DML. . .
– . . . only the consequences of DML !

— “row-based” view, not “statement-based”
— no trace of UPDATE or DELETE hitting 0 rows

• Different solutions offer more coverage:
– Event Triggers
– The pgaudit extension

https://github.com/2ndQuadrant/pgaudit

https://github.com/2ndQuadrant/pgaudit

Auditing Mode I

• Via SQL interface

• Log to log tables
– Do not log the logs!
– From the same DB
– (!) superuser can retrospectively alter logs

— Really a downside???

• No separate service
– Always up, cheaper to manage
– Query and monitor in real time

Auditing Mode II

• Via external plugin

• Log outside
– Logs cannot be retrospectively altered
– “eventually superuser-safe”

• Separate service
– Could be down
– Must be managed

• Custom plugin, to avoid parsing text
– Can be done in YourSetup v2.0

Output Plugin Example
• Start from the example in contrib:
/*---

*

* test_decoding.c

* example logical decoding output plugin

*

* Copyright (c) 2012-2014, PostgreSQL Global Development Group

*

* IDENTIFICATION

* contrib/test_decoding/test_decoding.c

*

*---

*/

#include "postgres.h"

#include "access/sysattr.h"

#include "catalog/pg_class.h"

#include "catalog/pg_type.h"

. . .

And now. . .

Questions?

And then. . .

Thank you!

Feedback here:
http://2015.foss4g-na.org/

http://2015.foss4g-na.org/

Licence

This document is distributed under the Creative
Commons Attribution-Non
commercial-ShareAlike 3.0 Unported licence

A copy of the licence is available at the URL
http://creativecommons.org/licenses/by-nc-sa/3.0/

or you can write to
Creative Commons, 171 Second Street, Suite 300,
San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/

	Prologue
	Logical Decoding Overview
	Use cases
	Minimal example
	Auditing

